Ch9 and Ch10, Machine Learning with Python Cookbook 2nd, by Kyle Gallatin and Chris Albon, O'Reilly, 2023. Free O'Reilly Learning by FJU ID
PCA
A.I 人工智慧 - 課程 18 - machine learning- 流形學習 Manifold Learning, Youtube 2019.
Dimensionality reduction with PCA: from basic ideas to full derivation. 2020. (原理無程式碼)
Principal Component Analysis(PCA) with code on MNIST dataset, Medium, 2019.
范叶亮:特征值分解,奇异值分解和主成份分析 (EVD, SVD and PCA),流形学习 (Manifold Learning) 2018
主成分分析降维(MNIST数据集), 2017. Python/Tensorflow
主成份分析(PCA)最详细和全面的诠释, 2016.
Kaggle:使用MNIST数据集进行PCA降维和LDA降维, 2018.
Interactive Intro to Dimensionality Reduction, Kaggle, 2017.
Manifold Learning
在Python中使用PCA和t-SNE可視化高維數據集, 2021.
流形学习t-SNE,LLE,Isomap, 2020.
2020機器學習t-SNE, 2020.
机器学习之降维, 2020.
流行学习-实现高维数据的降维与可视化, 2018. Python/Scikit-Learn code@GitHub 10多種降維方法/MNIST
手写数字上的流形学习: LLE, Isomap, MLLE, t-SNE, Python/Scikit-Learn code, MNIST